Wiki source code of Calculer les Équivalents Temps Plein (ETP)
Last modified by Aurelie Bertrand on 2025/07/17 09:36
Show last authors
author | version | line-number | content |
---|---|---|---|
1 | (% class="box infomessage" %) | ||
2 | ((( | ||
3 | 🙋 This tutorial is intended for **advanced users**. | ||
4 | |||
5 | ⏱ It is designed to be followed independently in **2 hours**. | ||
6 | ))) | ||
7 | |||
8 | ---- | ||
9 | |||
10 | {{ddtoc/}} | ||
11 | |||
12 | ---- | ||
13 | |||
14 | (% style="line-height: 1.2; text-align: justify;" %) | ||
15 | = Introduction = | ||
16 | |||
17 | In this tutorial, we will look at how to calculate the number of FTEs in Digdash. | ||
18 | The FTE or Full Time Equivalent is a unit of measurement that represents the work of a full-time employee. It can be used as a basis for other calculations such as the average number of employees. | ||
19 | |||
20 | To do this, we will use several fictitious data sets: | ||
21 | |||
22 | * The Excel file "Employee_Register" containing information on employees such as their ID, surname, first name, age, etc. | ||
23 | * The CSV file "HR_Contracts" containing employee identifiers, their leaving date and the number of days worked; the latter data is considered on a weekly basis. | ||
24 | * The CSV file "Calendar_2020_2025" containing calendar data, consisting of a single column with dates from 01/01/2020 to 31/12/2025. | ||
25 | |||
26 | (% style="line-height: 1.32; text-indent: 0.153543pt; text-align: justify; background-color: rgb(255, 255, 255); margin-top: 20px; padding: 0pt 0pt 8pt;" %) | ||
27 | = Prerequisites = | ||
28 | |||
29 | To complete this tutorial, you will need to : | ||
30 | |||
31 | * have installed DigDash Enterprise version 2025R1 or later; | ||
32 | * be a member of the "Data Model Designer" authorization group; | ||
33 | * download the files "Employee_Register", "HR_Contracts.csv" and "Calendar_2020_2025.csv" in the zip file [[ FTE_files.zip>>attach:FTE_files.zip]]. | ||
34 | |||
35 | (% class="box" %) | ||
36 | ((( | ||
37 | ℹ The screenshots in this tutorial were produced using the Chrome browser. There may be slight differences depending on the browser. | ||
38 | ))) | ||
39 | |||
40 | (% style="line-height: 1.2; text-align: justify;" %) | ||
41 | = Overview of methods = | ||
42 | |||
43 | There are two ways of dealing with this subject, each with its own advantages and disadvantages: | ||
44 | |||
45 | * The first consists of creating a Cartesian product between our two datasets. The advantage of this is that we can keep all the data and therefore retain interactivity with the dimensions (for example, filtering on a date). The disadvantage is the volume of data. Here we have: number of rows of HR data (305) x number of calendar rows (2191), i.e. 668,255 records. | ||
46 | * The second solution is based solely on HR data and allows predefined data to be displayed (for example: FTEs over a year, a month or a predefined period). The advantage is a limited volume of data, but on the other hand, the interactivity of the dashboard will be more limited. It will not be possible to filter by date. | ||
47 | |||
48 | (% style="line-height: 1.2; text-align: justify;" %) | ||
49 | = Step 1: Create and configure data models{{id name="Step1"/}} = | ||
50 | |||
51 | Before you can work with the methods described above, you need to integrate the data into Digdash. | ||
52 | |||
53 | (% class="box infomessage" %) | ||
54 | ((( | ||
55 | ℹ This step is common to both methods. | ||
56 | ))) | ||
57 | |||
58 | == Model Employee_Register == | ||
59 | |||
60 | === Import the data "Employee_Register" data === | ||
61 | |||
62 | Here we are going to import the data from the Excel file "Employee_Register" which represents the human resources data of a fictitious company. | ||
63 | |||
64 | To do this: | ||
65 | |||
66 | 1. Launch the **Studio**. | ||
67 | 1. Open the **Models **tab. | ||
68 | 1. Click the **New model** button. | ||
69 | 1. In the **Create a new data model** box, select **All types** in the **Files** section. | ||
70 | ➡ The **Search remote files **box appears. | ||
71 | 1. In the **Server** drop-down list, select "**Common Datasources**." | ||
72 | 1. Click the **Add file...** button. | ||
73 | [[image:Search_remote_files_dialog_EN.png||alt="Search remote files"]] | ||
74 | 1. The **Select a local file or URL **box appears, keep the default selection** From your computer**. | ||
75 | 1. Click **Browse **to select the **"Employee_Register" **file retrieved earlier. | ||
76 | 1. Click **OK**. | ||
77 | ➡ The file is now saved on the **"Common Datasources"** server and accessible to all users. | ||
78 | |||
79 | (% class="box infomessage" %) | ||
80 | ((( | ||
81 | ℹ If the //**UserDocs **//document server is selected the documents are only accessible to the user who uploaded them. | ||
82 | ))) | ||
83 | |||
84 | (% start="10" %) | ||
85 | 1. In the **Search remote files** box, select **"Employee_Register"**. | ||
86 | 1. Click **OK.** | ||
87 | |||
88 | The **Excel File **window appears. It offers data selection options and a preview of the data. | ||
89 | |||
90 | The items in the first row of the table correspond to the data types in each column. We will therefore use them as column headings. For example, Employee ID for column 1. To do this: | ||
91 | |||
92 | * In the **Data selection** section, select the **First row as header** checkbox. | ||
93 | [[image:Preview_register_EN.png||height="622" width="1253"]] | ||
94 | |||
95 | (% class="wikigeneratedid" %) | ||
96 | We can now move on to configuring the data model: click the **Next **button at the bottom right to open the data model configuration window. | ||
97 | |||
98 | === Configure the data model === | ||
99 | |||
100 | The data model configuration window opens on the **Columns** tab. | ||
101 | |||
102 | The type detected for some columns is not correct. | ||
103 | The **Age** column was detected as a measure. However, it will be used here as a dimension. To change this: | ||
104 | |||
105 | 1. Select the** Age** column. | ||
106 | 1. In the **Type** field at the top right, select **Dimension**. | ||
107 | 1. Also change the type of the **Postcode** column: select **Dimension (geographical)**. | ||
108 | |||
109 | You can then save: | ||
110 | |||
111 | * Click **Finish **and enter a name for the model: **Employee_Register**. | ||
112 | |||
113 | == Model HR_Contracts == | ||
114 | |||
115 | === Import data "HR_Contracts" === | ||
116 | |||
117 | Here we are going to import the data from the csv file "HR_Contracts" containing the employee's identifier, their end date and the number of days worked. | ||
118 | |||
119 | To do this: | ||
120 | |||
121 | 1. Create a new model in the same way as before and add the HR_Contracts.csv file to the document server. | ||
122 | ➡ The **Excel File **box appears with the data preview. | ||
123 | 1. In the **Data selection** section, select the **First row as header** box **.** | ||
124 | |||
125 | === Calculate the FTE === | ||
126 | |||
127 | We are now going to calculate the Full Time Equivalent (FTE) for each employee from the number of days worked per week using a data transformation. To do this: | ||
128 | |||
129 | 1. Add an empty column. | ||
130 | 1. Click the column header and then, on the context menu, **Data Transform... | ||
131 | [[image:Data_transform_EN.png||alt="Data transform" height="584" width="1185"]] ** | ||
132 | ➡ The **Data Transform **tab opens and displays the interface to create a transformation with the target column selected. | ||
133 | 1. In the script editor, enter the following code: | ||
134 | |||
135 | {{code}} | ||
136 | if(values[2]) | ||
137 | return values[2]/5; | ||
138 | return 0; | ||
139 | {{/code}} | ||
140 | |||
141 | Here, values[2] corresponds to the "Nb days worked" column. | ||
142 | [[image:Data_transform_creation_EN.png||alt="Data transform creation"]] | ||
143 | |||
144 | (% start="5" %) | ||
145 | 1. Click **Apply**. | ||
146 | ➡ You can view the result obtained in the column preview. | ||
147 | 1. Click the [[image:1738075980916-683.png||alt="Fermer"]] button to finish. | ||
148 | 1. Click the header of Column 3 to rename it: enter **Nb** **FTE**. | ||
149 | ➡ The result is as follows: | ||
150 | [[image:Data_transform_result_EN.png]] | ||
151 | |||
152 | You can now save: | ||
153 | |||
154 | * Click **Finish **and enter a name for the model: **HR_Contracts**. | ||
155 | |||
156 | == Data model HR_Complete{{id name="RH_Complet"/}} == | ||
157 | |||
158 | We are now going to combine the data from the data models "Employee_Register" and "HR_Contracts" by performing a join. | ||
159 | The join consists of aggregating the columns from several models thanks a column match called the join key. | ||
160 | You can consult the page[[ Performing a data join>>doc:Digdash.user_guide.studio.Create_datamodel.Combine_data.extract_data_source_join.WebHome]] page for more details. | ||
161 | |||
162 | 1. Click the **New model** button. | ||
163 | 1. In the **Create a new data model** box, select **Join** in the **Other** section. | ||
164 | ➡ The **Join** dialog box appears. | ||
165 | 1. Click the **+** button to the right of the **Selected Data Sources **section and select the data model **Employee_Register**. | ||
166 | 1. Repeat the operation to select the **HR_Contracts **data model. | ||
167 | 1. In the **Key columns** section, check the **Employee ID** column to use it as the join key. | ||
168 | 1. You can click **Next** to view the list of columns after the join. | ||
169 | 1. Click **Finish **and enter a name for the data model: **HR_Complete**. | ||
170 | |||
171 | == Data model Calendar == | ||
172 | |||
173 | (% class="box infomessage" %) | ||
174 | ((( | ||
175 | ℹ Only used for the first "Cartesian product" method. | ||
176 | ))) | ||
177 | |||
178 | We are now going to create the data model "Calendar" based on the file "Calendar_2020_2025_en.csv". | ||
179 | |||
180 | To do this: | ||
181 | |||
182 | 1. Create a new model in the same way as before and add the file "Calendar_2020_2025_en.csv" to the document server. | ||
183 | ➡ The **Excel File **box** **is** **displayed with the data preview. | ||
184 | 1. In the **Data selection** section, select the **First line as header** checkbox.** | ||
185 | [[image:Data_model_calendar_EN.png||height="589" width="1116"]]** | ||
186 | 1. Click **Finish **and enter a name for the data model: **Calendar**. | ||
187 | |||
188 | (% style="line-height: 1.2; text-align: justify;" %) | ||
189 | = Application of the "Cartesian product" method = | ||
190 | |||
191 | (% class="box warningmessage" %) | ||
192 | ((( | ||
193 | ❗The Cartesian product is used here for a particular case, in a controlled setting and with limited data. **If these prerequisites are not met performance and memory problems may arise.** | ||
194 | ))) | ||
195 | |||
196 | (% style="line-height:1.2; text-align:justify" %) | ||
197 | In order to create a Cartesian product between our two data models, "Calendar" and "HR_Complete", we need to have a common column with identical values in both models. To do this, we're going to modify the two models we created earlier and add a column that will be used as join key. | ||
198 | |||
199 | (% style="line-height: 1.2; text-align: justify;" %) | ||
200 | == Step 2: Perform a join of the data models Calendar and HR_Complete data models == | ||
201 | |||
202 | (% class="box infomessage" %) | ||
203 | ((( | ||
204 | ℹ This step follows on from [[Step 1: Create and configure the data models>>doc:||anchor="Step1"]]. | ||
205 | ))) | ||
206 | |||
207 | Here we are going to combine the data from the models "Calendar" and "HR_Complete" models. To do this, we first need to modify the models so that we have a join key. | ||
208 | |||
209 | (% style="line-height: 1.2; text-align: justify;" %) | ||
210 | === Modifying the model Calendar === | ||
211 | |||
212 | 1. Edit the data model "**Calendar**". | ||
213 | 1. Add an empty column. | ||
214 | 1. Open the **Data Transform...** tab. | ||
215 | 1. Click **Add **to create a new data transformation. | ||
216 | ➡ The interface **Creating the transformation** is displayed. | ||
217 | 1. Select //Column1 //from the **Target column** drop-down list. | ||
218 | 1. Enter the following code in the script editor: | ||
219 | {{code}}return 'a';{{/code}} | ||
220 | 1. Click **Apply **and then the [[image:1738075980916-683.png||alt="Fermer"]] button to finish. | ||
221 | 1. Click the column header then **Rename** to give the column the name **Join. ** | ||
222 | [[image:Calendar_a_EN.png||alt="Join key"]] | ||
223 | 1. Click **Finish** to save. | ||
224 | |||
225 | === Modify the model HR_Complete === | ||
226 | |||
227 | We are going to modify the model HR_Complete model via the model HR_Contracts model. | ||
228 | |||
229 | 1. Edit the data model **HR_Contracts**. | ||
230 | 1. Add a second column. | ||
231 | 1. Carry out the same operations as in the previous section to get the Join column. | ||
232 | 1. Click **Finish** to save. | ||
233 | ➡ A message warns you that the dependent models have been updated. | ||
234 | [[image:Update_dependant_DM_FR.png||alt="Warning" height="488" width="1147"]] | ||
235 | 1. Click **OK**. | ||
236 | ➡ In this way, the column is moved up to the model "HR_Complete": | ||
237 | [[image:Join_in_HR_complete_EN.png||alt="Join column"]] | ||
238 | |||
239 | === Join the data models HR_Complete and Calendar === | ||
240 | |||
241 | (% style="line-height:1.2; text-align:justify" %) | ||
242 | We are now going to combine the data models HR_Complete and Calendar by performing a join. | ||
243 | |||
244 | 1. Create a new Join data model as described in the paragraph [[Data model HR_Complete>>doc:||anchor="RH_Complet"]]. | ||
245 | 1. Add the model HR_Complete model and then the model Calendar. | ||
246 | 1. Check the **Join** column in the **Key columns** section. | ||
247 | [[image:Join_cartesian_product_En.png||alt="Join"]] | ||
248 | |||
249 | == Step 3: Calculate the sum of FTEs == | ||
250 | |||
251 | To continue, on the next screen we are going to create a calculated measure giving the sum of the FTEs: | ||
252 | |||
253 | 1. Click **Next **to display the list of columns. | ||
254 | 1. Click the **New measure** button and then **Calculated measure (advanced user)**. | ||
255 | [[image:New_measure_EN.png||alt="New measure" height="162" width="393"]] | ||
256 | 1. Enter the following code: | ||
257 | |||
258 | (% class="box warningmessage" %) | ||
259 | ((( | ||
260 | ❗ Field references //(<Date>,// //<Start date>,// //<End date>// and //<Nb FTE>)// must be inserted via drag and drop or double-click from the Measurements/Dimensions panel for this to work in your environment. | ||
261 | ))) | ||
262 | |||
263 | {{code language="js"}} | ||
264 | if (new Date(<Start date>*1000) <= new Date(<Date>*1000) | ||
265 | && (new Date(<End date>*1000) >= new Date(<Date>*1000) | ||
266 | || <End date>=='null')) | ||
267 | { | ||
268 | return <Nb ETP>; | ||
269 | } | ||
270 | return 0; | ||
271 | {{/code}} | ||
272 | |||
273 | (% start="4" %) | ||
274 | 1. Enter the name of the measurement: **Sum FTE**. | ||
275 | 1. Uncheck the **Compute after aggregation** box. | ||
276 | [[image:1752659215001-263.png||alt="Sum FTE"]] | ||
277 | 1. Click **OK**. | ||
278 | ➡ The measure is added to the list of columns. | ||
279 | 1. Click **Finish **and name the model **FTE** **Cartesian product**. | ||
280 | |||
281 | (% style="line-height: 1.2; text-indent: 0.153543pt; text-align: justify;" %) | ||
282 | == Step 4: Create a table FTEs by department == | ||
283 | |||
284 | We can now create a table displaying the sum of FTEs by department to visualize the result. | ||
285 | |||
286 | 1. From the **Flows** tab, click the **New flow** button. | ||
287 | 1. In the **Create a flow such as as chart or a {{glossaryReference glossaryId="Glossary" entryId="fabrique de documents"}}document builder{{/glossaryReference}}** box, select **Table**. | ||
288 | 1. Select the data model **FTE** **Cartesian product FTE.** | ||
289 | 1. Drag and drop the dimension **Department** and then the measure **Sum FTE**. | ||
290 | 1. Filtering on the date 01/01/2023, you should obtain the following table: | ||
291 | [[image:Table_FTE_dep_FR.png||alt="Table"]] | ||
292 | |||
293 | |||
294 | = Application of the "data model "HR_Complete" alone" method = | ||
295 | |||
296 | For this second method, we are going to work on the FTEs gained, lost and stable over the current year. In this example, we will obtain the results at today's date. | ||
297 | |||
298 | To do this, we need to determine three values: the FTEs for year N, year N-1 and the total of the two. These data will enable us to find out the number of FTEs for the current year, as well as any variations (new employees and leavers). We are therefore going to create 3 new measures calculated in the data model "HR_Complete". | ||
299 | |||
300 | == Step 2: Create the measures FTE N, FTE N-1 and FTE N & N-1 == | ||
301 | |||
302 | (% class="box infomessage" %) | ||
303 | ((( | ||
304 | ℹ This step follows on from [[Step 1: Create and configure data models>>doc:||anchor="Step1"]]. | ||
305 | ))) | ||
306 | |||
307 | 1. Edit the data model **HR_Complete**. | ||
308 | 1. Click **Next **to go to the **Columns** tab. | ||
309 | 1. Create a new calculated measure (advanced user). | ||
310 | |||
311 | (% class="box warningmessage" %) | ||
312 | ((( | ||
313 | ❗ Field references //(<Date>,// //<Start date>,// //<End date>,// //<Nb FTE>//...) must be inserted via drag and drop or double-click from the **Measures/Dimensions** panel for this to work in your environment. | ||
314 | ))) | ||
315 | |||
316 | === Measure ETP N === | ||
317 | |||
318 | To calculate the FTEs for year N : | ||
319 | |||
320 | 1. Enter the following code: | ||
321 | |||
322 | {{code language="js"}} | ||
323 | var dateinit = new Date(new Date(Date.now()).getFullYear(),00,01); | ||
324 | |||
325 | if(new Date(<Start date>*1000) <= new Date(Date.now())) | ||
326 | if(<End date> == 'null' || new Date(<End date>*1000) >= dateinit) | ||
327 | return <Nb FTE>; | ||
328 | return 0; | ||
329 | {{/code}} | ||
330 | |||
331 | (% start="2" %) | ||
332 | 1. Enter the name of the measure: **FTE N**. | ||
333 | 1. Uncheck the box **Compute after aggregation**. | ||
334 | [[image:Measure_FTE_N_EN.png||alt="FTE N"]] | ||
335 | 1. Click **OK**. | ||
336 | |||
337 | === Measure FTE N-1 === | ||
338 | |||
339 | To calculate the FTEs for year N-1: | ||
340 | |||
341 | 1. Enter the following code: | ||
342 | |||
343 | {{code language="js"}} | ||
344 | var dateinit = new Date(new Date(Date.now()).getFullYear()-1,00,01); | ||
345 | var datefin = new Date(new Date(Date.now()).getFullYear()-1,11,31); | ||
346 | |||
347 | if(new Date(<Start date>*1000) <= datefin) | ||
348 | if(<End date> == 'null' || new Date(<End date>*1000) >= dateinit) | ||
349 | return <Nb FTE>; | ||
350 | return 0; | ||
351 | {{/code}} | ||
352 | |||
353 | (% start="2" %) | ||
354 | 1. Enter the name of the measure: **FTE N-1**. | ||
355 | 1. Uncheck the box **Compute after aggregation**. | ||
356 | [[image:Measure_FTE_N-1_EN.png||alt="FTE N-1"]] | ||
357 | 1. Click **OK**. | ||
358 | |||
359 | === Measure FTE N & N-1 === | ||
360 | |||
361 | To calculate the total FTE for year N and N-1 : | ||
362 | |||
363 | 1. Enter the following code: | ||
364 | |||
365 | {{code language="js"}} | ||
366 | var dateinit = new Date(new Date(Date.now()).getFullYear()-1,00,01); | ||
367 | var datefin = new Date(new Date(Date.now()).getFullYear(),11,31); | ||
368 | |||
369 | if(new Date(<Start date>*1000) <= datefin) | ||
370 | if(<End date> == 'null' || new Date(<End date>*1000) >= dateinit) | ||
371 | return <Nb FTE>; | ||
372 | return 0; | ||
373 | {{/code}} | ||
374 | |||
375 | (% start="2" %) | ||
376 | 1. Enter the name of the measure: **FTE N & N-1**. | ||
377 | 1. Uncheck the box **Compute after aggregation**. | ||
378 | [[image:Measure_FTE_N&N-1_EN.png]] | ||
379 | 1. Click **OK**. | ||
380 | 1. Click **Finish** to save the changes. | ||
381 | |||
382 | == Step 3: Create measures gained, lost and stable FTE == | ||
383 | |||
384 | (% style="line-height:1.2; text-align:justify" %) | ||
385 | From here, all that remains to do is to calculate the differences between these values to obtain the desired measures: | ||
386 | |||
387 | * Gained FTE represents new entrants in the current year | ||
388 | * Lost FTE represents those leaving between the previous year and the current year | ||
389 | * Stable FTE represents the others who have not moved | ||
390 | |||
391 | To do this, we will create 3 new measures calculated in the same way as above, with the following properties. | ||
392 | |||
393 | (% class="box warningmessage" %) | ||
394 | ((( | ||
395 | ❗ Field references //(<ETP N>,// //<ETP N-1>//...) must be inserted via drag and drop or double-click from the **Measures/Dimensions** panel for this to work in your environment. | ||
396 | ))) | ||
397 | |||
398 | === Measure Gained FTE === | ||
399 | |||
400 | 1. ((( | ||
401 | (% class="wikigeneratedid" id="HEntrezlecodesuivant:" %) | ||
402 | (% style="font-size:14px" %)Enter the following code: | ||
403 | ))) | ||
404 | |||
405 | {{code language="js"}} | ||
406 | return <FTE N & N-1(sum)>-<FTE N-1(sum)>; | ||
407 | {{/code}} | ||
408 | |||
409 | (% start="2" %) | ||
410 | 1. Enter the name of the measure: **Gained FTE**. | ||
411 | 1. Leave the **Compute after aggregation** box checked. | ||
412 | 1. Click **OK**. | ||
413 | |||
414 | === Measure Lost FTE === | ||
415 | |||
416 | 1. ((( | ||
417 | (% class="wikigeneratedid" id="HEntrezlecodesuivant:-1" %) | ||
418 | (% style="font-size:14px" %)Enter the following code: | ||
419 | ))) | ||
420 | |||
421 | {{code language="js"}} | ||
422 | return <FTE N & N-1(sum)>-<FTE N(sum)>; | ||
423 | {{/code}} | ||
424 | |||
425 | (% start="2" %) | ||
426 | 1. Enter the name of the measure: **Lost** **FTE**. | ||
427 | 1. Leave the box **Compute after aggregation** checked. | ||
428 | 1. Click **OK**. | ||
429 | |||
430 | === Measure Stable FTE === | ||
431 | |||
432 | 1. ((( | ||
433 | (% class="wikigeneratedid" id="HEntrezlecodesuivant:-2" %) | ||
434 | (% style="font-size:14px" %)Enter the following code: | ||
435 | ))) | ||
436 | |||
437 | {{code language="js"}} | ||
438 | return <FTE N-1(sum)>-<Lost FTE(NO_AGG)>; | ||
439 | {{/code}} | ||
440 | |||
441 | (% start="2" %) | ||
442 | 1. Enter the name of the measure: **Stable FTE**. | ||
443 | 1. Leave the **Compute after aggregation** box checked. | ||
444 | 1. Click **OK**. | ||
445 | |||
446 | You should obtain the following columns: | ||
447 | |||
448 | [[image:HR_Complete_columns_EN.png]] | ||
449 | |||
450 | Click **Finish** to save. | ||
451 | |||
452 | == Step 4: Check the result == | ||
453 | |||
454 | To check the result, we are going to create a table showing the gained, lost and stable FTEs by department. | ||
455 | |||
456 | 1. From the **Flows** tab, click on the **New flow **button and then select **Table**. | ||
457 | 1. Select the data model **HR_Complete.** | ||
458 | 1. Drag and drop the dimension **Department** and then the 3 measures **Gained FTE, Lost FTE** and **Stable FTE**. | ||
459 | ➡ You should obtain the following result. We can see that during this year, we have lost no employees and there have been no new hires. This is normal given the dates in our dataset.[[image:1752678432191-721.png||alt="Table 2025"]] | ||
460 | \\If we were in 2024, we would obtain the following result : no new employees but some left. | ||
461 | [[image:1752678168842-178.png||alt="Table 2024"]] | ||
462 | 1. Rename the {{glossaryReference glossaryId="Glossary" entryId="Flux"}}Flow{{/glossaryReference}} and click **OK** to save. | ||
463 | |||
464 | = Congratulations! = | ||
465 | |||
466 | You have successfully created an FTE tracker. | ||
467 | Now all you have to do is apply it to your data! |